Incomplete inverse triangular factorization in parallel algorithms of preconditioned conjugate gradient methods
نویسندگان
چکیده
منابع مشابه
Analysis of Parallel Preconditioned Conjugate Gradient Algorithms
The conjugate gradient method is an iterative technique used to solve systems of linear equations. The paper analyzes the performance of parallel preconditioned conjugate gradient algorithms. First, a theoretical model is proposed for estimation of the complexity of PPCG method and a scalability analysis is done for three different data decomposition cases. Computational experiments are done on...
متن کاملPreconditioned Conjugate Gradient
.. ................................................................................................................... ix Chapter 1. Introduction ..................................................................................................1 Chapter 2. Background ..................................................................................................6 2.1. Matrix Compu...
متن کاملPreconditioned Conjugate Gradient Schemes
The conjugate gradient method is a powerful algorithm to solve well-structured sparse linear systems that arise from partial diierential equations. We consider here three diierent conjugate gradient schemes for solving elliptic partial diierential equations that arise from 5-point diierence schemes: the classical CG, CG with a block diagonal-block incomplete Cholesky preconditioner and the redu...
متن کاملParallel Incomplete-LU and Cholesky Factorization in the Preconditioned Iterative Methods on the GPU
A novel algorithm for computing the incomplete-LU and Cholesky factorization with 0 fill-in on a graphics processing unit (GPU) is proposed. It implements the incomplete factorization of the given matrix in two phases. First, the symbolic analysis phase builds a dependency graph based on the matrix sparsity pattern and groups the independent rows into levels. Second, the numerical factorization...
متن کاملVectorization of some block preconditioned conjugate gradient methods
The block preconditioned conjugate gradient methods are very effective to solve the linear systems arising from the discretization of elliptic PDE. Nevertheless, the solution of the linear system Ms = r, to get the preconditioned residual, is a 'bottleneck', on vector processors. In this paper, we show how to modify the algorithm, in order to get better performances, on such computers. Numerica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Keldysh Institute Preprints
سال: 2017
ISSN: 2071-2898,2071-2901
DOI: 10.20948/prepr-2017-37